Radiation Physics and Chemistry 208 (2023) 110887 Contents lists available at ScienceDirect ## Radiation Physics and Chemistry journal homepage: www.elsevier.com/locate/radphyschem Comparative study on the structural and electrochemical properties of nitrogen-doped and nitrogen and sulfur co-doped reduced graphene oxide electrode prepared by hydrothermal technique Sarawudh Nathabumroong ^a, Narong Chanlek ^b, Thanapong Sareein ^c, <u>Ekachai Chongsereecharoen</u> ^d Phakkhannan Pakawanit ^b, Chatwarin Poochai ^e, Tanachat Eknapakul ^a, Chakrit Sriprachuabwong ^e, Hideki Nakajima ^b, Piyaporn Thangdee ^a, Tanom Lomas ^e, Saroj Rujirawat ^b, Prayoon Songsiriritthigul ^a, Prapan Manyum ^a, Adisorn Tuantranont ^e, Rattikorn Yimnirun ^{f,g,*} - ^a Reaserch Network NANOTEG-SUT on Advanced Nanomaterials and Characterization, School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasama. 30000. Thailand - ^b Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand - C Division of Industrial Materials Science, Faculty of Science and Technology, Rajamangala University of Technology, Phra Nakhon, 10800, Thailand - ^d Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Klong Luang, Pathum Thani, 13180, Thailand - Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Security and Dual-Use Technology Center (NSD), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Klong Nueng, Amphoe Klong Luang, Phathum Thani, 12120 Thailand - f School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand - g Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand ## ARTICLE INFO Handling Editor: Dr. Chris Chantler Keywords: Reduced graphene oxide Nitrogen-doped reduced graphene oxide Nitrogen and sulfur-co-doped reduced graphene oxide The specific capacitance ${\sf sp}^2$ hybridization IR-Drop ## ABSTRACT Nitrogen- and co-nitrogen- and sulfur-doped reduced graphene oxide (named N-rGO and N/S-rGO) was prepared by a simple hydrothermal technique using urea and thiourea as doping agents, respectively, to improve the properties of supercapacitor electrodes. Both were compared with rGO in electrochemical evaluations. The supercapacitor using N-rGO in 1 M H₂SO₄ provided the largest specific capacitance, 99 F g⁻¹, while those using N/S-rGO and rGO exhibited 51 and 19 F g⁻¹ at 0.25 A g⁻¹, respectively. Furthermore, the supercapacitors using N-rGO and N/S-rGO electrodes showed a smaller charge transfer resistance (R_{ct}) and a lower *IR*-drop than those using the rGO electrode, indicating a faster charge transfer at the interface between electrode and electrolyte and higher electronic conductivity due to N or N/S heteroatom doping in the graphene oxide structure. Furthermore, the N-rGO electrode has a higher sp² hybridization ratio and a lower I_D/I_G ratio than the N/S-rGO electrode. Furthermore, the lowest contact angles of the N/S-rGO electrode were found, which was attributed to better aqueous electrolyte compatibility than the N-rGO and rGO electrodes. Therefore, the higher electrical conductivity of the N-rGO electrode reveals more relevant characteristics for high-performance supercapacitors than the good wettability of the N/S-rGO electrode.